The following chart depicts the percent of each state's population that is at least 65 years old:

AK 5.7	HI 13.3	SD 14.3	AL 13.0	IA 14.9	TN 12.4
AR 14.0	ID 11.3	TX 9.9	AZ 13.0	IL 12.1	UT 8.5
CA 10.6	IN 12.4	VA 11.2	CO 9.7	KS 13.3	VT 12.7
CT 13.8	KY 12.5	WA 11.2	DC 12.2	LA 11.6	WI 13.1
DE 13.0	MA 13.5	WV 15.3	FL 17.6	MD 11.3	WY 11.7
GA 9.7	ME 14.4	MI 12.3	MN 12.1	MO 13.5	MS 12.1
MT 13.4	NC 12.0	ND 14.7	NE 13.6	NH 12.0	NJ 13.2
NM 11.7	NV 11.0	NY 12.9	OH 13.3	OK 13.2	OR 12.8
PA 15.6	RI 14.5	SC 12.1			

A) Construct a frequency distribution INTERVAL beginning with 5 with an interval size of 2.

INTERVALS.	FREQUENCY

B) Use the frequency distribution to construct a histogram on your calculator and graph it in the accompanying viewing window:

Xmin = _____ Ymin = _____

Xmax = ____ Ymax = ____

c) What is the median, mean	, range, and standard deviatio	on of the data (NEAREST TENTH)?			
MEDIAN =	MEAN =	RANGE =			
STANDARD DEVIATION = _					
What percent of the data lies within 2 standard deviations of the mean?					

The following set of raw data shows the lengths, in millimeters, measured to the nearest mm, of 40 leaves taken from plants of a certain species. Make the table of frequency distribution beginning with 25 and using intervals of 5

Interval	Frequency

XMin = _____

YMin = _____

XMax = _____

YMax = _____

XScl = _____

YScl = _____

Creating a Frequency Distribution Table:

- 1. Decide on the number of intervals you wish to use. (usually given to you in the problem)
- 2. Divide the range of the data by the number of intervals to get an estimate of class width. Then round UP accordingly.
- 3. The first interval begins with the smallest data value.
- 4. Add the answer in part 2 to the smallest data value to get the starting value of the second interval.
- 5. Determine the ending value of the first interval accordingly.
- 6. Use your calculator to create a histogram to get the frequency of each interval.

Creating a Frequency Distribution Table:

- 1. Decide on the number of intervals you wish to use. (usually given to you in the problem)
- 2. Divide the range of the data by the number of intervals to get an *estimate* of class width. Then round UP accordingly.
- 3. The first interval begins with the smallest data value.
- 4. Add the answer in part 2 to the smallest data value to get the starting value of the second interval.
- 5. Determine the ending value of the first interval accordingly.
- 6. Use your calculator to create a histogram to get the frequency of each interval.