$$
x^{4}-x^{3}-4 x^{2}+1=f(x)
$$

X min $=$ \qquad Y min $=$ \qquad
$\mathrm{Xmax}=$ \qquad
Ymax $=$ \qquad

Maximum number of turns:
Number of zeros:
Actual zeros:
Relative minimum(s):
Relative maximum(s):

State the maximum number of turns the graph of each function could make. Then sketch the graph. State the number of real zeros. Approximate each zero to the nearest tenth. Approximate the relative minima and relative maxima to the nearest tenth.

1) $f(x)=x^{2}+2 x-5$
2) $f(x)=-x^{4}+x^{3}+2 x^{2}$

$X \min =$ \qquad Ymin $=$ \qquad
\qquad $Y \min =$ \qquad
$X \max =$ \qquad Ymax $=$ \qquad

Maximum number of turns:
Number of zeros:
Actual zeros:
Relative minimum(s):
Relative maximum(s):

Relative maximum(s):
3) $f(x)=x^{4}-4 x^{3}+2 x^{2}+x+4$

$X \min =$ \qquad $\mathrm{Ymin}=$ \qquad
$X \max =$ \qquad $Y \max =$ \qquad
\qquad $\mathrm{Ymin}=$ \qquad

X max $=$ \qquad $Y \max =$ \qquad

Maximum number of turns:
Number of zeros:

Actual zeros:
Relative minimum(s):
Relative minimum(s):
Relative maximum(s):
Relative maximum(s):
5) $f(x)=x^{5}-4 x^{3}+4 x-1$
A.

$X \min =$ \qquad Y min $=$ \qquad

Xmax $=$ \qquad Ymax $=$ \qquad
6) $f(x)=x^{3}+11 x^{2}+35 x+32$
$4 v$

$X \min =$ \qquad Y min $=$ \qquad
$X \max =$ \qquad $\mathrm{Ymax}=$ \qquad

Maximum number of turns:
Number of zeros:
Actual zeros:
Relative minimum(s):
Relative maximum(s):

Relative maximum(s):
7) $f(x)=-x^{5}+4 x^{3}-5 x-2$
A.

$X \min =$ \qquad Y min $=$ \qquad
X max $=$ \qquad $Y \max =$ \qquad

Maximum number of turns:
Number of zeros:
$X \min =$ \qquad Ymin $=$ \qquad $X \max =$ \qquad $Y \max =$ \qquad

Maximum number of turns:
Number of zeros:
Actual zeros:
Relative minimum(s):
Relative maximum(s):

Relative maximum(s):

