

Graphing Calculator Lab

Modeling Data Using Polynomial Functions

LinReg

9=ax+b a=1.078571429 b=-1993.214286 r²=.8500857505 r=.9220009493

a= b=82 c= -8	QuadRes 2+bx+c 0207142857 .69285714 2375 9441503244
Ans	9441503244

ExpReg

y=a*b^x

a=2.8167501E-6

b=1.008994922

r2=.785939171

r=.8865321038

<u>LINEAR.</u>	QUADRATIC
=	a =
=	b =
	c =
=	r =

	X	Y1	Y2	Y 3	
20		174.71	149.86	184.76	ı
THE RESERVE TO SECURE ASSESSMENT		75.79	149.26	186.42	
20		.76.87 .77.95	148.62	188.1	
20		79.03	147.94 147.21	189.79	
20		80.11	146.45	191.49 193.22	
20	16 1	81.19	145.64	194.95	
20		82.26	144.79	196.71	
20:		83.34	143.9	198.48	
20:		84.42	142.97	200.26	
202	20 1	85.5	142	202.06	

Type of Correlation:

Best Fit Model:

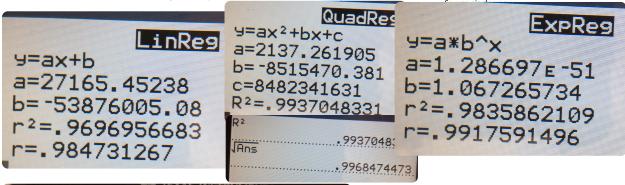
Strong

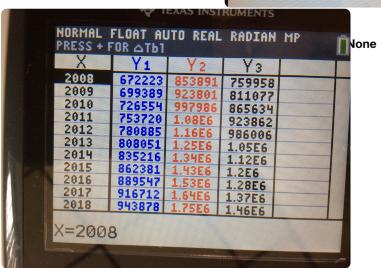
Moderate

Weak None

For Exercises 1–3, use the table that shows how many minutes out of each eight-hour workday are used to pay one day's worth of taxes.

- 1. Draw a scatter plot of the data. Then graph several curves of best fit that relate the number of minutes to the number of years since 1930.
- 3. Based on this equation, how many minutes should you expect to work each day in the year 2010 to pay one day's taxes?


Year	Minutes
1940	83
1950	117
1960	130
1970	141
1980	145
1990	145
2000	160


Source: Tax Foundation

For Exercises 4–7, use the table that shows the estimated number of alternative-fueled vehicles in use in the United States per year.

- 4. Draw a scatter plot of the data. Then graph several curves of best fit that relate the number of vehicles to the year.
- 5. Write the equation for the curve that best fits the data. Round to the nearest tenth.
- 6. Based on this equation before rounding, how many Alternative-Fueled Vehicles would you expect to be in use in the year 2008?

Year	Estimated Alternative- Fueled Vehicles in Use in the United States
1995	333,049
1996	352,421
1997	367,526
1998	383,847
1999	411,525
2000	455,906
2001	490,019
2002	518,919

For Exercises 8–11, use the table that shows the distance from the Sun to the Earth for each month of the year.

Month

January

February

March April

May

June

July

August

September

October

November

December

Source:astronomycafe.net

Distance

0.9840

0.9888

0.9962

1.0050

1.0122

1.0163

1.0161

1.0116

1.0039

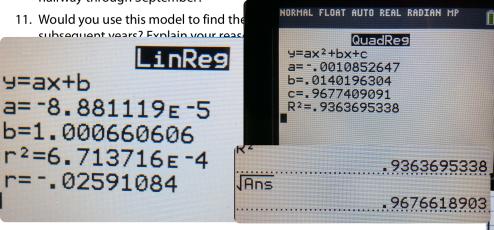
0.9954

0.9878

0.9837

.9888

.9962


1.005

1.0122

1.0163 1.0161 1.0116 1.0039 .9954 .9878

- 8. Draw a scatter plot of the data. Then graph several curves of best fit that relate the distance to the month.
- 9. Write the equation for the curve that best fits the data.

10. Based on this equation, what is the distance from the Sun to the Earth halfway through September?

EvaDoo		FOR AT61			
ExpReg	X	Y1	Y 2	Y3	
y=a*b^x	9.5	.99982	1.003	.99975	
a=1.000593861	10.5	.99973	.9953	.99966	
	11.5	.99964	.98544	.99957	
b=.9999107186	12.5	.99955	.97341	.99948	
	13.5	.99946	.95922	.99939	
r ² =6.785033 _E -4	14.5	.99937	.94285	.9993	
r=0260480968	15.5	.99928	.92431	.99921	
- 10200100700	16.5	.9992	.9036	.99912	
	17.5	.99911	.88972	.99903	
	18.5	.99902	.85567	.99894	
	19.5	.99893	.82845	.99885	