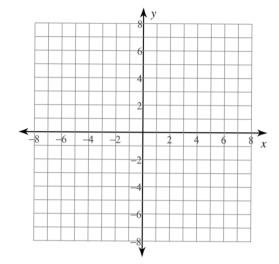

Like the ellipse, the hyperbola can also be defined as a set of points in the coordinate plane. A hyperbola is the set of all points (x, y)

in a plane such that the difference of the distances between (x, y)


and the foci is a positive constant.

Draw your diagram here

$$\frac{(x-3)^2}{4} - \frac{(y+1)^2}{9} = 1$$

1) Get the equation into standard form if not done already.

 $\frac{(x-h)^{\frac{1}{2}} / (y-k)^{\frac{1}{2}}}{a^{\frac{1}{2}}} - \frac{(y-k)^{\frac{1}{2}} / (x-h)^{\frac{1}{2}}}{b^{\frac{1}{2}}} = 1$

Standard Form:_			
Center:		_	
Transverse Axis:	(Circle (One)	
Horizontal		Vertical	
A =	B =	C =	
Vertices:			
Endpoints:			
Foci:			
Latus Rectum Le	ngth:		
Latus Rectum En	dpoints:		