Like the ellipse, the hyperbola can also be defined as a set of points in the coordinate plane. A hyperbola is the set of all points (x, y)
in a plane such that the difference of the distances between (x, y)
and the foci is a positive constant.

Draw your diagram here

$$
\frac{(x-3)^{2}}{4}-\frac{(y+1)^{2}}{9}=1
$$

1) Get the equation into standard form if not done already.
$\frac{(\mathbf{x}-\mathbf{h})^{2} /(\mathrm{y}-\mathrm{k})^{2}}{\mathbf{a}^{2}}-\frac{(\mathrm{y}-\mathbf{k})^{2} /(\mathrm{x}-\mathbf{h})_{2}}{\mathbf{b}^{2}}=\mathbf{1}$

Standard Form:
Center:

Transverse Axis: (Circle One)
Horizontal Vertical
$A=$ \qquad $B=$ \qquad $c=$ \qquad

Vertices: \qquad

Endpoints: \qquad

Foci: \qquad

Latus Rectum Length: \qquad
Latus Rectum Endpoints:
\qquad
\qquad
\qquad

Eccentricity: \qquad

