Conic Sections: The Parabola

A parabola is set of all points (x, y) that are

\qquad

Standard Form of an Equation of a Parabola
A parabola with vertex (h, k) and directrix $\mathrm{y}=\mathrm{k}-\mathrm{a}$ is
\qquad Axis)

Fill in the definition of a parabola

Fill in the formulas and the axis for each form of a parabola

For directrix $x=h-a$, the equation is
\qquad Axis)

$$
(x-h)^{2}=4 a(y-k) \quad(y-k)^{2}=4 a(x-h)
$$

The \qquad lies on the axis \boldsymbol{a} units (directed distance) from the vertex. The coordinates of the focus are as follows:

Fill in the blanks

The latus rectum is the chord through a focus parallel to the directrix. The latus rectum has length \qquad

Graph.

$$
(x+2)^{2}=4(y-1)
$$

$$
\begin{gathered}
\text { (Vertical Axis) } \\
(x-h)^{2}=4 a(y-k)
\end{gathered}
$$

Draw the graph for EACH parabola
vertex (h,k)
directrix $y=k-a$
Focus: $(\mathrm{h}, \mathrm{k}+\mathrm{a})$

Graph.

$$
(y+2)_{\substack{\text { (Horizontal Axis) } \\(y-k)^{2}=4 a(x-h)}}^{2}=-8(x-1)
$$

Vertex (h,k)
Directrix: $x=h-a$
Focus: $(\mathrm{h}+\mathrm{a}, \mathrm{k})$

